A NOTE ON A FINITE ELEMENT FOR VIBRATING THIN, ORTHOTROPIC RECTANGULAR PLATES

R. E. Rossi
Department of Engineering, Universidad Nacional del Sur, 8000-Bahia Blanca, Argentina

(Received 17 July 1997)

1. INTRODUCTION

A reasonable amount of finite element models has been developed for dealing with thin, orthotropic plates. Among them, the one developed by Tsay and Reddy [1] is very convenient, especially when dealing with every-day design-type problems.

On the other hand, and when dealing with vibrating, thin rectangular isotropic plates, the element developed by Bogner et al. [2] appears to be one of the most accurate ones, ideal for scientific, academically oriented investigations.

The present study deals with an extension of the rectangular, thin plate element developed by Bogner et al. in the 1960s [2] for static, elastic stability and vibration problems of thin, rectangular orthotropic plates. The essential details of the analysis are given in this note, as well as some examples which show the convenience and accuracy of the approach.

2. THE FINITE ELEMENT ORTHOTROPIC MODEL

The rectangular element referred to the local co-ordinate system x, y and the adopted local numbering system of the nodes is shown in Figure 1.

The transverse displacement w and its derivatives $\partial w / \partial x, \partial w / \partial y$ and $\partial^{2} w / \partial x \partial y$ are the degrees of freedom corresponding to each node. The vector of the nodal displacements is expressed as

$$
\left\{w_{e}\right\}^{t}=\left[\begin{array}{llllll}
w_{1} & (\partial w / \partial x)_{1} & (\partial w / \partial y)_{1} & \left(\partial^{2} w / \partial x \partial y\right)_{1} & \cdots & \left(\partial^{2} w / \partial x \partial y\right)_{4} \tag{1}
\end{array}\right]
$$

Now introducing the dimensionless variables $\xi=x / a, \eta=y / b$ and using the interpolation polynomials used in reference [2] one obtains the following shape functions:

$$
\begin{array}{lc}
N_{1}(\xi, \eta)=\left(2 \xi^{3}-3 \xi^{2}+1\right)\left(2 \eta^{3}-3 \eta^{2}+1\right), & N_{9}(\xi, \eta)=\xi^{2} \eta^{2}(3-2 \xi)(3-2 \eta), \\
N_{2}(\xi, \eta)=a \xi\left(\xi^{2}-2 \xi+1\right)\left(2 \eta^{3}-3 \eta^{2}+1\right), & N_{10}(\xi, \eta)=a \xi^{2} \eta^{2}(\xi-1)(3-2 \eta), \\
N_{3}(\xi, \eta)=b \eta\left(2 \xi^{3}-3 \xi^{2}+1\right)\left(\eta^{2}-2 \eta+1\right), & N_{11}(\xi, \eta)=b \xi^{2} \eta^{2}(3-2 \xi)(\eta-1), \\
N_{4}(\xi, \eta)=a b \xi \eta\left(\xi^{2}-2 \xi+1\right)\left(\eta^{2}-2 \eta+1\right), & N_{12}(\xi, \eta)=a b \xi^{2} \eta^{2}(\xi-1)(\eta-1), \\
N_{5}(\xi, \eta)=\eta^{2}\left(2 \xi^{3}-3 \xi^{2}+1\right)(3-2 \eta), & N_{13}(\xi, \eta)=\xi^{2}(3-2 \xi)\left(2 \eta^{3}-3 \eta^{2}+1\right), \\
N_{6}(\xi, \eta)=a \xi \eta^{2}\left(\xi^{2}-2 \xi+1\right)(3-2 \eta), & N_{14}(\xi, \eta)=a \xi^{2}(\xi-1)\left(2 \eta^{3}-3 \eta^{2}+1\right), \\
N_{7}(\xi, \eta)=b \eta^{2}\left(2 \xi^{3}-3 \xi^{2}+1\right)(\eta-1), & N_{15}(\xi, \eta)=b \xi^{2} \eta(3-2 \xi)\left(\eta^{2}-2 \eta+1\right), \\
N_{8}(\xi, \eta)=a b \xi \eta^{2}\left(\xi^{2}-2 \xi+1\right)(\eta-1), & N_{16}(\xi, \eta)=a b \xi^{2} \eta(\xi-1)\left(\eta^{2}-2 \eta+1\right) \tag{2}
\end{array}
$$

The displacement at an arbitrary point of the element in now given by

$$
\begin{equation*}
w(\xi, \eta)=[N]\left\{w_{e}\right\} . \tag{3}
\end{equation*}
$$

Figure 1. The finite element and the local numbering of its nodes.

Considering the case in which the directions of orthotropy coincide with the co-ordinate axes, one expresses the strain energy of the plate by [3]

$$
\begin{equation*}
U=\frac{1}{2} \iint\left\{D_{1}\left(\frac{\partial^{2} w}{\partial x^{2}}\right)^{2}+2 v_{2} D_{1} \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}+D_{2}\left(\frac{\partial^{2} w}{\partial y^{2}}\right)^{2}+4 D_{k}\left(\frac{\partial^{2} w}{\partial x \partial y}\right)\right\} \mathrm{d} x \mathrm{~d} y \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}=\frac{E_{1} h^{3}}{12\left(1-v_{1} v_{2}\right)}, \quad D_{2}=\frac{E_{2} h^{3}}{12\left(1-v_{1} v_{2}\right)}, \quad D_{k}=\frac{G h^{3}}{12} \tag{5}
\end{equation*}
$$

and where h is the plate thickness; E_{1} and E_{2} are the orthotropic elasticity moduli; v_{1} and v_{2} are the orthotropic Poisson moduli ($E_{1} v_{2}=E_{2} v_{1}$); and G is the transverse elasticity coefficient.

Substituting equation (3) in equation (4) and integrating over the rectangular element subdomain one obtains

$$
\begin{equation*}
U=\frac{1}{2}\left\{w_{e}\right\}^{\mathrm{t}} \frac{D_{1}}{a b}\left[\alpha^{2}\left[k^{(1)}\right]+\delta \alpha^{-2}\left[k^{(2)}\right]+\varphi\left[k^{(3)}\right]+v_{2}\left[k^{(4)}\right]\right]\left\{w_{e}\right\}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=b / a, \quad \delta=D_{2} / D_{1}, \quad \varphi=2 D_{k} / D_{1} \tag{7}
\end{equation*}
$$

and

$$
\begin{gather*}
{\left[k^{(1)}\right]=\int_{0}^{1} \int_{0}^{1}\left[N_{\xi \xi}\right]^{t}\left[N_{\xi \xi}\right] \mathrm{d} \xi \mathrm{~d} \eta, \quad\left[k^{(2)}\right]=\int_{0}^{1} \int_{0}^{1}\left[N_{\eta \eta}\right]^{t}\left[N_{\eta \eta}\right] \mathrm{d} \xi \mathrm{~d} \eta,} \\
{\left[k^{(3)}\right]=2 \int_{0}^{1} \int_{0}^{1}\left[N_{\xi \eta}\right]^{[}\left[N_{\xi \eta}\right] \mathrm{d} \xi \mathrm{~d} \eta, \quad\left[k^{(4)}\right]=\int_{0}^{1} \int_{0}^{1}\left\{\left[N_{\xi \xi}\right]^{t}\left[N_{\eta \eta}\right]+\left[N_{\eta \eta}\right]^{t}\left[N_{\xi \xi}\right]\right\} \mathrm{d} \xi \mathrm{~d} \eta .} \tag{8}
\end{gather*}
$$

The subscripts denote the derivatives with respect to the dimensionless spatial variables.
In the case of an isotropic plate one has

$$
\begin{equation*}
v_{1}=v_{2}=v, \quad \delta=1, \quad \varphi=1-v \tag{9}
\end{equation*}
$$

and, accordingly, the stiffness matrix of the isotropic element is

$$
\begin{equation*}
[k]=\frac{D}{a b}\left\{\alpha^{2}\left[k^{(1)}\right]+\alpha^{-2}\left[k^{(2)}\right]+\left[k^{(3)}\right]+v\left[k^{(4)}\right]-v\left[k^{(3)}\right]\right\} \tag{10}
\end{equation*}
$$

where $D=E h^{3} / 12\left(1-v^{2}\right)$.
Bogner et al. [2] give the following expression for the generic component of the same matrix:

$$
\begin{equation*}
\tilde{q}_{i j}=\frac{D}{a b}\left[\alpha^{2} \tilde{\gamma}_{i j}^{(1)}+\alpha^{-2} \tilde{\gamma}_{i j}^{(2)}+\tilde{\gamma}_{i j}^{(3)}+v \tilde{\gamma}_{i j}^{(4)}\right] a^{\tilde{r i}_{i j}} b^{\tilde{\mu}_{i j}} . \tag{11}
\end{equation*}
$$

Also, Table 6 of reference [2] contains the numerical values of $\tilde{\gamma}_{i j}^{(1)}, \tilde{\gamma}_{i j}^{(2)}, \tilde{\gamma}_{i j}^{(3)}, \tilde{\gamma}_{i j}^{(4)}, \tilde{\lambda}_{i j}$ and $\tilde{\mu}_{i j}$ for $i=1, \ldots, 16$ and $j=1, \ldots, i$.

Comparing equations (10) and (11) one immediately concludes that

$$
\begin{gather*}
k_{i j}^{(1)}=\tilde{\gamma}_{i j}^{(1)} a^{\tilde{\mu}_{i j}} b^{\tilde{\mu}_{i j}}, \quad k_{i j}^{(2)}=\tilde{\gamma}_{i j}^{(2)} a^{\tilde{\mu}_{i j}} b^{\tilde{\mu}_{i j}}, \\
k_{i j}^{(i)}=\tilde{\gamma}_{i j}^{(3)} a^{\tau_{i j}} b^{\tilde{\mu}_{i j}}, \quad k_{i j}^{(i)}=\left(\tilde{\gamma_{i j}^{(3)}}+\tilde{\gamma}_{i j}^{(4)}\right) a^{\tau_{i j}} b^{\tilde{\mu}_{i j}} \tag{12}
\end{gather*}
$$

Accordingly, the numerical values given in reference [2] allow for the straightforward transcription of the stiffness matrix of the orthotropic plate element. Regarding the inertia matrix, its generic component is [2]

$$
\begin{equation*}
m_{i j}=\rho \frac{a b h}{1225} \tilde{\gamma}_{i j}^{(5)} a^{\tilde{\tau}_{i j}} b^{\tilde{\mu}_{i j}}, \tag{13}
\end{equation*}
$$

where ρ is the mass density and the values of $\tilde{\gamma}_{i j}^{(5)}$ being given in Table 6 of reference [2].

3. NUMERICAL RESULTS

In order to investigate the advantages and accuracy of the orthotropic element developed in this study, several problems were solved in cases in which exact or very

Table 1
The frequency coefficients of a simply supported, square, isotropic plate

Number of elements	Degrees of freedom	Ω_{1}	$\Omega_{2}=\Omega_{3}$	Ω_{4}	$\Omega_{5}=\Omega_{6}$
25	100	19.7403	$49 \cdot 4014$	79.0265	99.3402
100	400	19.7393	49.3514	78.9611	98.7390
225	900	19.73922	$49 \cdot 3587$	78.9577	98.7046
400	1600	19.739213	49.3482	78.9571	98.6988
625	2500	19.739211	49-3481	78.9569	98.6972
225*	900	19.739210	$49 \cdot 34806$	78.9569	98.6966
400*	1600	19.739209	$49 \cdot 34804$	78.95685	98.6962
625*	2500	19.7392089	49.348027	78.956842	98.69611
$2500 \dagger$	7500	19.7400	$49 \cdot 3513$	78.9698	98.7034
Exact solution		19.7392088	49-348022	78.956835	98.69604

[^0]Table 2
The frequency coefficients of a simply supported, square, orthotropic plate ($D_{2} / D_{1}=0 \cdot 5$, $\left.D_{3} / D_{1}=0 \cdot 5, v_{2}=0 \cdot 3\right)$

Number of elements	$\begin{aligned} & \text { Degrees of } \\ & \text { freedom } \end{aligned}$	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
25	100	$15 \cdot 6062$	35.6226	44.7449	$62 \cdot 4856$
100	400	$15 \cdot 6053$	35.5877	44.6903	$62 \cdot 4249$
225	900	15.60523	35.5858	$44 \cdot 6873$	$62 \cdot 4217$
400	1600	15.60522	35.5855	44.6868	$62 \cdot 4211$
625	2500	$15 \cdot 605216$	35.58543	$44 \cdot 6866$	62.42096
225*	900	$15 \cdot 6052155$	35.58539	44.68658	$62 \cdot 42091$
400*	1600	$15 \cdot 6052150$	35.585374	44.68655	62.42088
625*	2500	$15 \cdot 6052148$	35-585369	44.686541	$62 \cdot 420865$
$2500 \dagger$	7500	15.6059	35.5882	44.6888	62.4311
Exact solution		$16 \cdot 6052147$	$35 \cdot 585365$	$44 \cdot 686534$	$62 \cdot 420859$

* Results obtained using the present element considering $1 / 4$ of the plate.
\dagger Results obtained using ALGOR, considering also $1 / 4$ of the plate.
accurate results were known. Three of those problems are reported herein. The eigenvector and corresponding eigenvalues were determined by the method of inverse iteration [4].

In Table 1 are depicted the lower eigenvalues $\Omega_{i}=\omega_{i} a^{2} \sqrt{\rho h / D}$ in the case of a simply supported square isotropic plate. The frequency coefficients have been evaluated using (1) the newly developed orthotropic plate element degenerated into the isotropic case and (2) the ALGOR system [5]. Excellent agreement with the exact eigenvalues is achieved.

In Table 2 is shown a comparison of natural frequency coefficients, $\Omega_{i}=\omega_{i} a^{2} \sqrt{\rho h / D_{1}}$, in the case of a square simply supported, orthotropic plate. The exact eigenvalues have been computed using the well known expression for the rectangular simply supported, thin orthotropic plate:

$$
\begin{equation*}
\Omega_{n m}=a^{2} \sqrt{\rho h / D_{1}} \omega_{n m}=\pi^{2}\left[n^{4}+2 n^{2} m^{2}(a / b)^{2} D_{3} / D_{1}+m^{4}(a / b)^{4} D_{2} / D_{1}\right]^{1 / 2}, \tag{14}
\end{equation*}
$$

Table 3
The frequency coefficients of a clamped, square, orthotropic plate $\left(D_{2} / D_{1}=0 \cdot 5, D_{3} / D_{1}=0 \cdot 5\right.$, $v_{2}=0 \cdot 3$)

Number of elements	Degrees of freedom	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
25	100	30.0006	54.5135	68.0546	88.5513
100	400	29.9797	54.3484	$67 \cdot 8148$	$88 \cdot 1860$
225	900	29.9795	54.3390	$67 \cdot 8011$	88.1647
400	1600	29.9793	54.3374	67.7988	88.1609
625	2500	29.9792	54.3370	67.7981	$88 \cdot 1598$
225*	900	29.97919	54.3368	67.7979	88.1595
400*	1600	29.97917	54.3367	67.7977	$88 \cdot 1592$
625*	2500	29.979169	54.33668	67.79768	88.15914
$2500 \dagger$	7500	29.9813	54.3434	67.8030	$88 \cdot 1801$
Reference [6]		29.979167	54.336663	67.797655	$88 \cdot 159097$

[^1]where
\[

$$
\begin{equation*}
D_{3}=v_{2} D_{1}+2 D_{k} \tag{15}
\end{equation*}
$$

\]

Finally, in Table 3 are shown results for the case of a vibrating, thin, clamped orthotropic square plate.

ACKNOWLEDGMENTS

The author is indebted to Professor P. A. A. Laura for help in selecting and revising the contents of this note.

The present study has been sponsored by the Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur and by the Comisión de Investigaciones Científicas, Buenos Aires Province.

REFERENCES

1. C. S. Tsay and J. N. Reddy 1978 Journal of Sound and Vibration 59, 307-311. Bending, stability and free vibrations of thin orthotropic plates by simplified mixed finite elements.
2. F. K. Bogner, R. L. Fox and L. A. Schmit 1966 Matrix Methods in Structural Mechanics, AFFDL-TR-66-80, 397-443. The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas.
3. S. G. Lekhnitskii 1968 Anisotropic Plates. New York: Gordon and Breach.
4. T. R. Chandrupatla and A. D. Belegundu 1991 Introduction to Finite Elements in Engineering. Englewood Cliffs, New Jersey: Prentice-Hall.
5. ALGOR Professional Mech/E 1992 Linear Stress and Vibration Analysis Processor Reference Manual. Part Number 6000.401, Revision 2. Pittsburgh, Pennsylvania.
6. T. Sakata and K. Hosokawa 1988 Journal of Sound and Vibration 125, 429-439. Vibrations of clamped orthotropic rectangular plates.

[^0]: * Results obtained using the present element considering $1 / 4$ of the plate.
 \dagger Results obtained using ALGOR, considering also $1 / 4$ of the plate.

[^1]: * Results obtained using the present element considering $1 / 4$ of the plate.
 \dagger Results obtained using ALGOR, considering also $1 / 4$ of the plate.

